>

20威海考研数学:高数这些定理需牢记(三)

- 编辑:金沙客户端登录 -

20威海考研数学:高数这些定理需牢记(三)

  如果函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且在区间端点的函数值相等,即f(a)=f(b),那么在开区间(a,b)内至少有一点(a

  如果函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,那么在开区间(a,b)内至少有一点(a

  如果函数在定义区间上连续,除去有限个导数不存在的点外导数存在且连续,那么只要用方程f(x)=0的根及f(x)不存在的点来划分函数f(x)的定义区间,就能保证f(x)在各个部分区间内保持固定符号,因而函数f(x)在每个部分区间上单调。

  如果函数f(x)在区间(a,b)内有定义,x0是(a,b)内的一个点,如果存在着点x0的一个去心邻域,对于这去心邻域内的任何点x,f(x)f(x0)均成立,就称f(x0)是函数f(x)的一个极小值。

  在函数取得极值处,曲线上的切线是水平的,但曲线上有水平曲线的地方,函数不一定取得极值,即可导函数的极值点必定是它的驻点(导数为0的点),但函数的驻点却不一定是极值点。

  定理(函数取得极值的必要条件)设函数f(x)在x0处可导,且在x0处取得极值,那么函数在x0的导数为零,即f(x0)=0.定理(函数取得极值的第一种充分条件)设函数f(x)在x0一个邻域内可导,且f(x0)=0,那么:(1)如果当x取x0左侧临近的值时,f(x)恒为正;当x去x0右侧临近的值时,f(x)恒为负,那么函数f(x)在x0处取得极大值;(2)如果当x取x0左侧临近的值时,f(x)恒为负;当x去x0右侧临近的值时,f(x)恒为正,那么函数f(x)在x0处取得极小值;(3)如果当x取x0左右两侧临近的值时,f(x)恒为正或恒为负,那么函数f(x)在x0处没有极值。

  在做函数图形的时候,如果函数有间断点或导数不存在的点,这些点也要作为分点。

本文由数学发布,转载请注明来源:20威海考研数学:高数这些定理需牢记(三)